

exCHANGING INNOVATIONS

Rich Bendis President and CEO Editor, innovationDaily Innovation America Omaha, Nebraska May 9, 2011

The Global Innovation Imperative

- Innovation is Key to Growing and Maintaining a Country's Competitive Position in the Global Economy and to address Global Challenges
- •Collaboration among Small and Large Businesses, Universities, and Research Institutes is Essential for Innovation & Commercialization
- •New Institutions and New Incentives, are increasingly important to support collaboration and foster innovation
- •Competitive advantages are increasingly tied to human capital and innovation
- •Economic growth is closely related to education/ workforce, energy, climate change, environmental, natural resource, geopolitical issues & entrepreneurship

Why Is Innovation Essential?

"INNOVATION DISTINGUISHES BETWEEN A LEADER AND A FOLLOWER."

-STEVE JOBS

How Leading Nations Responding to the Innovation Imperative?

They are providing four things:

•High-level Focus

- •Sustained Support for R&D: Leveraging Public and Private Funds
- •Support for Innovative SMEs
- •New Innovation Partnerships to bring new products and services to market

Note: Many countries and regions are investing very substantial resources to create, attract and retain industries in leading sectors

The New Locational Competition

mtech×

Definition: The competition for economic activity

Intense and growing competition among nations and regions for well paid jobs and improving living standards.....

- 84% of Americans believe there will be a "lot more jobs in the future that require math and science skills"
- 88% agrees that students with advanced science and math skills will have an advantage when it comes to college opportunities
- California: 52% to 27% believe that state policymakers are not making technology and innovation enough of a priority
- 78% of Americans think "a national innovation initiative would be effective"

Trends In TBED

- Cycles of emphasis over the years on different elements; elements continuing on the rise
 - Increasing expectation for community of university research
 - Growth of venture development organizations, private accelerators, and start-up weekends
 - Capital
- Reorganization of economic development efforts
 - Public-private partnerships
 - State TBED orgs merged into state economic development departments
 - Regional emphasis

- A changing economy with a different recovery pattern
- Shortage of skilled workers once recovery in full swing
- Different expectations for higher education
- 28 new governors
- Fiscal pressures
- Federal approaches changing slowly

SST Elements for Tech-based Economy

- Intellectual infrastructure
- Spillovers of knowledge
 - from universities
 - from informal networks
- Physical infrastructure
- Technically skilled workforce
- Capital
- Entrepreneurial culture
- Quality of life
 innovation

AMERICA

innovation

AMERICA

Lessons Learned

- Committed high-level leadership is required that understands:
 - Economic impact further down the road than other approaches
 - Research does not always succeed
 - Significant cultural differences between actors
- Action should be based on:
 - Understanding of needs, capabilities, and gaps
 - Filling gaps to encourage change in private sector behavior

- Characteristics of successful TBED programs
 - Three hallmarks for long-term sustainability
 - Do good work
 - Measure whether they' re doing good work
 - Telling people they' re doing good work
 - Champions from more than one sector (ideally all three)
 - Private sector, university, government (gov or legislature)
 - Effective management and staff
 - Entrepreneurial in approach/responding to change

ASTRA 2010 Nebraska Ranking

	Ľ	low Nebraska Ranks	2	D10
1	Rank	General Demographic & Economic Indicators ^a	Nebraska	Total U.S.
	38	Nebraska's Population as of July 1, 2009	1,796,619	304,059,724
	36	Nebraska's Civilian labor force, 2009 (thousands)	979.6	153,203
	23	Nebraska's Personal income per capita, 2008 (\$)	\$39,150	\$40,208
	33	High Tech Employment in Nebraska's Workforce, 2008	31,820	5,781,460
	37	Gross State Product, 2009 (\$ billions)	\$80.1	\$13,972.3
	44	Federal R&D Obligations per Civilian Worker 2007	\$196	\$764
	37	Business R&D in Nebraska 2007 (current \$ millions)	\$489	\$265,919
	Rank	Academic Indicators & Degree Production ⁸		
	36	Advanced S&E Degrees Awarded, 2007	742	150,127
	36	Bachelor's Degree Holders or Higher Among Individuals 25-44 Yrs. Old In Nebraska, 2007	147,777	24,856,576
	37	Federal R&D Expenditures at Universities & Colleges, all sources, FY 2006 (\$ thousands)	\$149,618	\$30,033,156
	38	State & Local Govt. R&D Expenditures at Universities & Colleges, FY 2006 (\$ thousands)	\$10,881	\$3,016,240
	26	Industry R&D Expenditures at Universities & Colleges, FY 2006 (\$ thousands)	\$22,814	\$2,427,627
	20	Institutional R&D Expenditures at Universities & Colleges, FY 2006 (\$ thousands)	\$151,170	\$9,062,058
1	Rank	NCES Key Educational Statistics — Public Schools (latest) 4		
	19	Expenditure per Pupil 2007-2008 School Year	\$9,857	\$9,154
	37	Enrollment in Public Elementary & Secondary Schools 2007-2008	291,244	966,519 (avg.)
-	37	Number of Full Time Equivalent (FTE) Teachers, 2006 - 2007	21,930	3,181,494
	Rank	Workforce Indicators ¹		
	37	Employment in High-Tech Establishments in Nebraska, 2006	64,779	13,733,632
	28	Individuals in S&E Occupations as Share of Workforce in Nebraska, 2008 (percentage)	3.20%	3.75%
	38	Employed S&E Doctorate Holders in Workforce in Nebraska, 2008	2,970	618,370
	40	Engineers in Workforce in Nebraska, 2008	6,350	1,626,330
	29	Life & Physical Scientists as Share of Workforce in Nebraska, 2008 (percentage)	.36%	.40%
	Rank	R&D Spending by Source, R&D Indicators, Awards, & Patents *		
	46	SBIR Funding for Nebraska Small Businesses, 2008-2008 (current \$ thousands)	\$2,438	\$1,731,667
	45	Avg. Annual Federal SBIR Funding per \$1 million of GDP in Nebraska, 2008-2008	\$31	\$127
	34	Academic R&D in Nebraska, 2008 (\$ thousands)	\$376,092	\$51,784,120
	37	Patents Awarded per 1,000 indiv. in S&E Occupations in Nebraska in 2008	6.0	13.4
	46	Hi-Tech Share of all business establishments in Nebraska, 2006 (percentage)	5.93%	8.35%
	Rank	Venture Capital & Entrepreneurial Indicators 4, a		
	50	Number of Deals CY 2009	0	2,802
	50	Venture Capital Investments in 2009 (millions of 2009 \$)	\$0	\$17,690.7
	32	Net High-Tech Business Formations in Nebraska, 2006	98	14,031

Growing Jobs, Industries, and Talent:

A Competitive Advantage Assessment and Strategy for Nebraska

Prepared for: Nebraska Department of Economic Development and Nebraska Department of Labor

Prepared by: Battelle Technology Partnership Practice

October 2010

Primary Industry Clusters Driving Nebraska's Economy

- Agricultural Machinery
- Agriculture & Food Processing
- Biosciences
- Business Management & Administrative Services
- Financial Services
- Health Services
- Hospitality & Tourism
- Precision Metals Manufacturing
- Renewable Energy
- Research, Development, & Engineering Services
- Software & Computer Services
- Transportation, Warehousing, & Distribution Logistics

mtechx

AMERICA

Key Indicators: Talent

State	Science & Engineering Degrees as Share of Higher Education Degrees, 2007	Science & Engineering Doctorates Awarded, 2008	Population Ages 25+ with Bachelor's Degree or Higher, 2008	Share Employed in Science & Engineering Occupations, 2008	
United States	32.1%	37,627	27.7%	3.8%	
Nebraska	26.1%	192	27.1%	3.2%	
lowa	30.7%	607	24.3%	2.8%	
Kansas	27.4%	300	29.6%	3.6%	
Oklahoma	30.7%	232	22.2%	2.8%	
Tennessee	25.3%	578	22.9%	2.4%	
Utah	36.6%	418	29.1%	3.8%	
Virginia	38.3%	955	33.7%	6.3%	
Wisconsin	32.7%	627	25.7%	3.3%	

Note: Higher education degrees inclu

Source: National Science Foundation, System database, 2008; U.S. Census E

Key Indicators: Entrepreneurial Activity

State	Avg. Annual Growth in New Business Establishments, 2001–05	Job Creation Rate from New Business Establishments, 2001–05	Inc. 500 Firms 2009	
United States	12.2%	6.2%	n/a	
Nebraska	10.7%	5.2%	3	
lowa	10.0%	4.7%	1	
Kansas	11.1%	5.8%	3	
Oklahoma	11.6%	6.1%	4	
Tennessee	11.3%	5.8%	3	
Utah	15.8%	7.4%	14	
Virginia	12.1%	6.1%	35	
Wisconsin	10.1%	4.9%	6	

Notes: To qualify for the 2009 Inc. 500 list, companies were required to be U.S.-based, privately held, for profit, independent and founded and generating revenue in the first week of 2005. Companies were required to have minimum revenue of \$200,000 in 2005 and \$2 million in 2008.

Source: U.S. Census of Business Dynamics; Inc. 500.

Key Indicators: R&D Expenditures and Intensity

		ACADEMIC		INDUSTRY			
State	R&D Expenditures, 2007 (\$ Thousands)	R&D Expenditures per \$1,000 GSP, 2007	Percent Change 2001–07	R&D Expenditures, 2007 (\$ Thousands)	R&D Expenditures per \$1,000 GSP, 2007	Percent Change 2001–07	
United States	\$49,430,767	3.60	51.1%	\$269,267,000	19.63	33.3%	
Nebraska	\$364,842	4.54	51.0%	\$489,000	6.09	59.6%	
lowa	\$586,786	4.52	33.4%	\$1,202,000	9.25	47.1%	
Kansas	\$375,960	3.21	39.9%	\$1,304,000	11.15	0.4%	
Oklahoma	\$298,663	2.19	17.0%	\$527,000	3.86	-2.9%	
Tennessee	\$761,388	3.11	79.9%	\$1,638,000	6.68	9.0%	
Utah	\$412,512	3.91	22.0%	\$1,764,000	16.71	50.4%	
Virginia	\$971,905	2.53	59.1%	\$4,840,000	12.60	63.7%	
Wisconsin	\$1,066,688	4.57	46.4%	\$3,411,000	14.61	38.1%	

Source: National Science Foundation Survey of R&D Expenditures at Universities and Colleges; U.S. Bureau of Economic Analysis; National Science Foundation/Division of Science Resources Statistics, Survey of Industrial Research and Development.

State	Total Cumulative Venture Capital Invested, 2005–2009 (\$ Millions)	SBIR Innovation Grants, Total Funded Projects, FY 2005–09		
United States	\$33,419	25,373		
Nebraska	\$2,476 (\$287 without ConAgra)	49		
lowa	\$479	79		
Kansas	\$385	72		
Oklahoma	\$269	97		
Tennessee	\$2,777	167		
Utah	\$1,196	224		
Virginia	\$6,507	1,542		
Wisconsin	\$943	296		

Source: Thomson Reuters, VentureOne Database; U.S. Small Business Administration, TechNET database.

Summary Assessment of Development Position, Growth Niches, and Path for Each of Nebraska's Primary Industry Clusters

	ECONOMIC PERFORMANCE				TECHNOLOGY POTENTIAL		TALENT BASE			
INDUSTRY CLUSTER	Level of Specialization	Job Gains	Competitive Position to U.S.	Relative Economic Output Growth to U.S.	Geographic Pattern in Nebraska	Presence of Core Technology Drivers	Productivity Level Compared to U.S.	National Level of High Skilled Talent Base	Nebraska Position in High Skilled Talent	Summary of Development Paths
Agricultural Machinery	↑	¥	•	¥	Statewide	None Identified	↑	¥	¥	Retention through Modernization, Higher Value Activities and Exports
Agriculture & Food Processing	1	¥	↓	↑	Statewide	Yes	^	↓	¥	Retention and Innovation
Biosciences	Ŷ	↑	۲	۲	Statewide	Yes	¥	↑	¥	Innovation and Expansion through Higher Value Activities
Business Management & Administrative Services	↑	↑	¥	¢	Metro	None Identified	¥	Ŷ	¥	Attraction and Expansion through Higher Value Activities
Financial Services	۸	↑	1	۸	Metro	None Identified	¥	↑	۸	Attraction and Expansion through Higher Value Activities
Health Services		1	4	4	Statewide	None Identified	.↓			Expansion
Hospitality & Tourism	¥	↑	¥	Ŷ	Emerging Statewide	None Identified	¥	¥		Expansion through improved venues
Precision Metals Manufacturing	↑	↑	↑	۴	Rural	None Identified	¥	¥	¥	Retention and Expansion through Supply Chain Connections
Research, Development, & Engineering Services	¥	↑	↑	Ŷ	Emerging Metro	Yes		↑	¥	Innovation
Software & Computer Services	•	↓	¥	¥	Metro	Yes	¥	1	¥	Attraction & Innovation
Transportation, Warehousing, & Distribution Logistics	↑	↑	↑	¢	Statewide	Yes	¢	¥	¥	Expansion & Attraction
Renewable Energy (Biofuels)	۴	↑	1	n/a	Rural	Yes	n/a	n/a	n/a	Innovation & Deployment

Innovation Ecosystem

mtechx

The concept of the **Innovation Ecosystem** stresses that the flow of technology and information among people, enterprises and institutions is key to a vibrant innovation process.

Implementing a New Innovation Paradigm

- Deviate from traditional perspectives
- Encourage public investment and risk taking
- Develop trust through collaboration
- Ensuring responsiveness to partners' missions
- Build consensus of all constituents through education, participation, and positive outcomes
- Move from TBED to IBED
- Innovation-Based Economic Development

Economic Development

- Economic Development is a threelegged stool:
 - Attraction

innovation

- Retention & Re-Invention
- Grow Your Own
- IBED requires patience and persistence, continuity and consistency.
- Working with early-stage companies takes time.
- A balanced portfolio economic development strategy is best!

Traditional & Innovation-Based Development

<u>Traditional</u>

 Competitive Basis

Key values /

Lead Organization

offerings

•

Natural resources Highways / Rail Proximity Costs

i.e. PHYSICAL

Business parks

Incentives

Chambers /

EDCs

Innovation (Clusters)

Specialized talent Networks, information University research / professors Market understanding Global Reach

i.e. KNOWLEDGE

Access to research Workforce competencies Lifestyle

Lifestyle Economic developers

Innovation Intermediaries

Triple Helix of Innovation

Inseparable
MissionsEDUCATION
Research
Public Service
Lifelong LearningIndustrial
Parable
Product
Product
Product
Profit

GOVERNMENT

Economic Benefit Return on Investment Sustainable Development

The Role of Education

Knowledge Creation

Knowledge Transfer

Innovation Economy: Definitions & Terminology

- Knowledge is the confident understanding of a subject, potentially with the ability to use it for a specific purpose
- Knowledge economy is based on creating, evaluating, and trading knowledge
- INNOVATION is the creation and transformation of knowledge into new products, processes, and services that meet market need.....and interactions, entertainment forms, and ways of communicating and collaborating

Creating the Knowledge & Innovation Culture

- Knowledge Acquisition and Deepening to reinforce science and technology teaching and resources at all levels of education
- Knowledge Creation Develop Research Capability in all priority sectors of the economy
- Knowledge Transfer to reinforce Science and Technology Capability in all priority sectors of the economy
- Innovation Culture To encourage Innovation at all levels to help stimulate economic growth

Importance of Major Research Universities

Importance of Major Research Universities

- The primary driver of the future economy and job creation will be innovation, largely driven by science and engineering (Gathering Storm Report)
- Global economic competitiveness requires the confluence of scientific discovery that creates knowledge and technological opportunity, workforce talent, and access to enabling resources.
- Universities can contribute to all of these components; over past decade, NE Ohio has embraced this concept and CWRU and its partners continue to both invest in and produce innovation successes.

Value Creation by University Research Engines

Select contributions of U.S. research institutions to the national economy:

- 2009: >3,300 patents issued to universities.
- More than \$40 billion and 270,000 jobs added annually to U.S. economy.
- More than 500 companies formed annually around university discoveries.
- Impactful products and interventions such as Google and Rituxan

Guiding Framework For Universities

Relevance

- Utilize all University disciplines
- Connectivity
- Link University to community assets and partners

Productivity

- New Metrics
- Value added, not exclusion-based
- Output per unit of input
- Scaled metrics

Challenges for Universities

- Innovation and Entrepreneurship are global and competition will only increase – we must continue to invest in the three key ingredients, people, knowledge and an innovation enabling environment
- Value creation and economic growth through discovery and translation to innovation and commercialization is a complex, non-linear and often lengthy process.
- University support and rewards system for faculty must more effectively support strategies and goals in technology commercialization
- As a key partner, universities must continue to enhance their efficiencies and flexibility in supporting the innovation enterprise

University Commercialization Centers

MIT - BOSTON

UCSD – San Diego

DESHPANDE CENTER

for Entrepreneurism and reenhology Aurance

innovation AMERICA

THE GAP

- » Technology risk
- » Market risk

Commercial Enterprise

Investors Commercialize

- Angels
- VC's
- Corporations

The Role of Industry: Wealth Creation

Capitalism is a Process of Creative Transformation

"The interaction of technological innovation with the competitive marketplace is the fundamental driving force in capitalist industrial progress."

Joseph A. Schumpeter, 1942

Government's Role in Innovation

- Long term vision and planning
- Identify gaps and trends in science, technology, innovation and SME development
- Be a catalyst through long-term strategic investments and partnering
- Develop a balanced and flexible research and development investment portfolio
- Encourage private sector innovation
- Establish performance-based research and development
- Accelerate the commercial exploitation of creativity and knowledge, through innovation and research, to create wealth, grow the economy, build successful businesses and improve quality of life

Federal Program Opportunities

16 Green Proof of Concept Center

- \$12 Million
- Proof of Concept Center
- Proof of Commercial Relevance Center

Jobs & Innovation Accelerator Challenge

• \$33 million Cluster Program

USDA ARS Programs

- Partnership program with the commercialization of lowa-based ag-tech companies
- Opportunities for joint research programs (CRADAs)
- Joint research increases the likelihood of success in conducting cooperative research between the USDA and lowa companies
- These agreements can help strengthen state and national economic development and help U.S. businesses compete globally in the marketplace.

mtechx

E-RIC

innovation AMERICA

Characteristics of Successful Biotechnology Clusters

- Strong science base
- Entrepreneurial culture
- Growing company base
- Ability to attract key staff
- Availability of financing
- Appropriate premises & R&D infrastructure
- •Close proximity of business support services & large companies in related industries
- Skilled workforce
- •Effective networks (for example, associations & cluster councils)
- •Supportive (national, regional and local) government policies
 - AMERICA

Battelle Biosciences Report for Nebraska

Bioscience Performance Metrics

Summary of State Performance in Selected Bioscience-related Metrics

Metrics	Nebraska	United States	Rank*
Bioscience Industry, 2008			
Total Bioscience Industry Employment, 2008	11,350	1,420,324	ш
Bioscience Industry Location Quotient, 2008	1.19	n/a	1 1
Biosciences Industry Establishments, 2008	319	47,593	IV
Academic R&D Expenditures, FY 2008			
Bioscience R&D (\$ thousands)	\$251,408	\$31,818,810	30
Bioscience Share of Total R&D	66.8%	61.3%	14
Bioscience R&D Per Capita	\$141.09	\$104.54	7
Change in Bioscience R&D, FY 2004–08	9.2%	22.3%	44
NIH Funding, FY 2009			
Total, Including ARRA Funds (\$ thousands)	\$108,719	\$25,837,590	36
Per Capita Funding	\$60.51	\$84.16	27
Change in Baseline Funding, FY 2004–09**	20.8%	-4.7%	4
Change in Total Funding, FY 2004–09	46.6%	14.6%	5
Clinical Trials, Initiated 2009	244	5,299	32
Higher Education Degrees in Bioscience Fields, AY 2008	1,448	161,811	34
Employment in Bioscience-related Occupations, 2008	4,900	717,510	35
Bioscience Venture Capital Investments, 2004–09 (\$ millions)	\$50.9	\$60,099	36
Bioscience and Related Patents, 2004–09	314	75,593	35

*State ranking figures for bioscience industry employment metrics are calculated as quintiles (I=Top Quintile; V=Bottom Quintile). All other metrics are ranked 1-52. **Baseline Funding does not include American Recovery and Reinvestment Act (ARRA) funds for 2009.

For source notes, see end of State Profile.

bionebraska

innovation AMERICA

life sciences association

Nebraska Bioscience Roadmap 2010

Prepared by: Bio Nebraska and the Nebraska Legislature Natural Resources Committee

September 2010

Figure ES-3. Employment Composition of the Bioscience Industry in Nebraska and the United States, 2008

Nebraska Biosciences Location Quotient

Figure 4. Nebraska Major Bioscience Subsectors—Degree of Specialization, Job Growth, and Size, 2008

mtech

Source: Battelle calculations based on BLS, QCEW program data from the Minnesota IMPLAN Group.

AMERICA

Warren Buffet

"Risk comes from not knowing what you're doing."

"Why not invest your assets in the companies you really like? As Mae West said, "Too much of a good thing can be wonderful".

How Do You Build Biotech Companies?

- Follow the "P's":
- People
- People
- Plans
- Patents
- Products

Platform

Pipeline

- Potential
- Partners
- Price
- Promises
- Performance

- Persistence
- Perspiration
- Passion
- Pfocus
- Pfinancial

mtechx

P-luck

Pfun

BIOEnterprise BioEnterprise Initiative - Cleveland

Vision

Make region a **nationally recognized** center for **health care innovation and commercialization** (e.g., Minneapolis, Research Triangle)

Mission

Be the leader in biosciences industry growth focused on recruiting and attracting entrepreneurs, creating, accelerating, and retaining start-ups, and nurturing and promoting a vibrant business environment

mtechx

Performance Metric and Target Capital raised by health care companies in region >\$150 million invested in region annually

BIOEnterprise Business Acceleration

BIOEnterprise Entrepreneurial System

- Entrepreneurial Assistance
 - BioEnterprise Initiative
 - Institutional Technology Offices
 - Cleveland Clinic Innovations
 - Case Western Technology Transfer Office

mtech

- University Hospitals Clinical Research
- BioInnovation Institute (Akron)
- JumpStart
- Funding

MERICA

- Validation, seed, and angel funds
- Venture and growth equity funds

Market-Driven Approach

Choose/create opportunities that are fundable...

- Regional entrepreneurs
- Institutions
- Foreign recruitment
- Company creation

innovation

...position companies to raise capital...

- Experienced management support
- -Clinical and research collaborations
- -Business development
- -Network of bioscience capabilities

...from targeted, interested investors

- Access to capital
 - Venture/equity
 - Strategic
 - Debt
 - Grant

Market-back Approach

BioEnterprise Organization Chart

mtechx

- Health Care Venture ~ Research Triangle
 - ~\$150 million per year over last 6 years
 - 45 Healthcare Funding Sources in Ohio
 - 80% of funding from outside region
- Industry Growth
 - Now at 600 companies
 - Several dozen firms started/attracted each year
 - Over 20,000 employed in industry
 - 29 "Exits"
- National Recognition

BIOEnterprise Industry Accelerating Initiatives

- Pipeline
 - Translational research institutes and accelerators
 - Company attraction
 - New funding sources (seed, angel, VC)
- Medical Mart & Convention Center
- Real Estate Development
 - Cleveland Health-Tech Corridor
 - Akron Biomedical District
- Cleveland International Fund

Minnesota Medical Device Industry

•Employment: 29,351 1.4 percent of total

•The five largest medical device firms in Minnesota alone (Medtronic,3M, Boston Scientific, St. Jude Medical, and American Medical Systems) generate more than \$22 billion in sales

•Minnesota ranked 2nd in the US people employed in medical device manufacturing, only less than California

•Minnesota based medical device wages paid 8.3% higher than in the U.S.

•Minnesota based surgical appliance manufacturing companies, wages are 40.9 percent higher than in the U.S

Source: DEED Labor Market Information Office ALMIS 2006 Annual Employment Data.

mtechx

Iowa's Key Clusters

2011 Iowa Bioscience Strategy

Prepared for: Innovate Iowa Prepared by: Battelle Technology Partnership Practice February 2011

PREPARED FOR: Iowa Department of Economic Development

> PREPARED BY: Battelle's Technology Partnership Practice

September 2005

Battelle The Business of Innova

FINAL REPORT

Iowa Bioscience Report – 2011 Battelle

2011 Iowa Bioscience Strategy

Prepared for: Innovate Iowa Prepared by: Battelle Technology Partnership Practice February 2011

The biosciences is a high-wage industry in Iowa and nationally. The average annual wage paid by the bioscience sector in Iowa was \$60,833 in 2008, more than \$24,000 or 67 percent above that paid on average in the overall Iowa private sector. Wage premiums in the biosciences reflect a greater degree of value-adding activities relative to other major industries. In addition, a knowledge-based industry like the biosciences requires high-skilled workers whose higher wage requirements reflect the greater value of their education and skills in the labor market. And while this holds true relative to other industries, even within the biosciences, wages across states and regions can vary considerably based on the occupational and industry composition or mix within each.

Table ES-1: Average Annual Wages for Iowa and the U.S., Biosciences vs. Other Major Industries, 2008

In division	Average Annual Wages, 2008					
maasay		lowa	United States			
Agricultural Feedstock & Chemicals	\$	68,065	\$	72,279		
Management of Companies & Enterprises	\$	66,265	\$	94,842		
Total Biosciences	s	60,833	\$	77,595		
Finance & Insurance	\$	56,653	\$	85,274		
Drugs & Pharmaceuticals	\$	56,288	\$	93,378		
Research, Testing, & Medical Labs	\$	55,678	\$	80,785		
Wholesale Trade	\$	49,623	\$	61,847		
Professional, Scientific, & Technical Svcs	\$	49,373	\$	74,354		
Manufacturing	ŝ	47,173	\$	54,392		
Medical Devices & Equipment	\$	44,675	\$	63,606		
Construction	\$	44,031	\$	49,014		
Information	ŝ	43,234	s	70,780		
Transportation & Warehousing	s	37,165	\$	42,969		
Total Private Sector	\$	36,359	\$	45,229		
Health Care & Social Assistance	s	35,641	s	42,150		
Real Estate	\$	33,436	\$	43,239		
Agriculture, Forestry, Fishing & Hunting	s	30,157	\$	25,982		

Source: Battelle analysis of Bureau of Labor Statistics, QCEW data from IMPLAN

University City Science Center - Philadelphia

About the Science Center

- A private, non-profit, technology-based economic development organization
- Oldest and largest urban research park in the US - established in 1963
- Our mission is to strengthen the region's life sciences and tech sectors
- We work with academic research institutions and companies, and many organizational partners across the region

The Science Center transcends government and geographic boundaries

An Independent Nonprofit With 32 Shareholders

CH The Children's Hospital of Philadelphia® A pediatric bealthcare network

QED Program Overview

The nation's 1st Multi-Institutional Proof-of-Concept Program:

- Support and grow entrepreneurial culture among the region's research institutions.
- Engage researchers and inventors to develop technologies with high potential for new healthcare products.

- Develop a business advisor network and early commercialization resources.
- Create follow-on opportunities for early-stage technologies through market-driven funding.

Other Key Science Center Programs and Collaborations

- Quorum: The entrepreneur's clubhouse.
- Breadboard: Exploring the intersection of art, science and technology.
- Campus Revitalization Project: Making our campus greener and safer.
- Chemical Genomics (Wistar, USP): A drug discovery-screening-validation collaborative facility
- Coulter Program (Drexel): Translational research in biomedical devices
- Health Innovation Partnership (Drexel, UPenn): Creating a grass-roots entrepreneurial culture among academic faculty
- IPART (BFTP/DCED):assisting Pennsylvania's small businesses compete for Federal SBIR and STTR funding.
- ITMAT/CTSA (Penn/CHOP/Wistar):Institute for Translational Medicine and Therapeutics, supported by NIH.
- Nanotechnology Institute (Penn, Temple, Drexel, Lehigh): supporting proof-ofconcept projects in the field of nanotechnology.
- UPSTART (UPenn): Assisting faculty to launch new companies

Federal Programs to Increase Innovation Capital

R&D Tax Credit Reauthorization (Pending)

•US ranks 24th out of 38 countries.

•Provides **\$9B in tax relief** to companies and individual - **\$10B of R&D** can be supported by a permanent research tax credit.

National Angel Capital Tax Credit:

•20+ states have tax credits for early stage investment ranging from 10-50%.
•Senator Mark Pryor (D Arkansas) has proposed legislation talking about an across the board 25% credit.

•Advantages to having credits includes **Increases the state's risk capital** market & **stimulates investment in new companies &** creates **new jobs** from startups.

Patent Reform Proposal:

•Proposed versions of the Patent Reform would switched U.S. patent priority from the existing "first-to-invent" system to a "first-to-file" system.

SBIR/STTR Reauthorization:

 Increase from 2.5% to 5% the amount that each federal agency with an extramural research and development budget

mtech

Increase in Phase I and Phase II awards

AMERICA

Regional Innovation Clusters

Five Key Components to Consider When Defining Unique Regional Assets

What you make, including *your existing* & *prospective industry* clusters

What you do: your workforce skills & human *capital base*

Your capacity to innovate and generate new ideas

mtecb

Factor Costs, Natural Resources

The basic conditions defining the economic milieu of the region

Why Do RICs Matter?

ntach

- They create a transition path from unemployment or underemployment to high-skill jobs.
- On average, jobs within clusters pay higher wages.
- Regional industries based on inherent place-based advantages are less susceptible to off-shoring.
- Create many new job opportunities for American workers.
- They connect disenfranchised communities to new career and educational opportunities.
- They stabilize communities by re-purposing idle manufacturing assets, engaging underutilized human capital, and contributing to improvements in the quality of life.

The Federal Government's role is to help self organizing, bottom-up RIC participants become all they can be.

- Identify existing <u>NOT</u> creating new RICs
- Convener of relevant stakeholders
- Creator of overarching framework to support national networks of clusters
- Disseminator of information

innovatio

Provider of targeted capital investments

Best Practices in RIC Management

- Regionally-Led from existing networks & assets bottom-up approach
- Involve partnerships between private and public at all levels (i.e. local, regional, state, and Federal)
- Unique strengths of region are built upon rather than trying to copy other regions (i.e. everyone can't support a biotech cluster)
- Different strategies are developed for different clusters
- Well-funded initially and **self-sustaining over the long-term**
- Linked with relevant external efforts, including regional economic development partnerships and cluster initiatives in other locations

Basic Conditions for a Biotech Cluster

Technology Investment

innovation

Biotechnology Commercialization

- Life Science Greenhouses ("LSGs") address critical phase of continuum between university research and funding by professional venture capitalists.
- Effective mechanism for investments in early-stage life sciences companies.
- Attract private investors to exponentially leverage the investment of the Commonwealth

mtech

> ready > set

Pennsylvania's Life Science Greenhouses - Goals

1. Leadership – securing the Commonwealth's position at the top of the life sciences industry in bringing

innovations to the health care needs of Pennsylvanians.

2. Enhanced Commercialization – supporting efforts to introduce new therapies and bring needed

medical products to the marketplace.

innovation

AMERICA

3. Increased Employment – developing high-paying life sciences jobs for Pennsylvanians.

ennsylvania Enacts \$2 Billion Strategy to Boost BioTech

mtech

One of the world's Hot Spots for biomedical technology just got hotter.

PA Life Sciences Greenhouse Impact from 2001-2009

Dollars of federal funding attracted to LSG projects or as follow-on to project participants	\$66.1 M
Number of jobs created as a result of LSG supported projects or Activities	3,149.5
Number of jobs retained as a result of LSG supported projects or activities	2,743.5
Number of new companies (within their first 3 years) supported as project participants	134
Follow on funding	\$1.96B

innovation AMERICA

Technology Investment

Technology-based Economic Development Tools Along the Continuum > ready > set > succeed Formation Concept Growth Maturity Reinvention **Ben Franklin Technology Partners BFTDA Technology Grants BFTDA/TSIB Venture Programs BFTDA University Program** Center for eBusiness and Advanced IT **CURE Program** Revenue & Employees **Idea Foundry** Industrial Resource Centers **Innovation Partnership Keystone Innovation Zones / Innovation Grants** Life Sciences Greenhouse Initiative New PA Venture Guarantee Program New PA Venture Investment Program PA Initiative for Nanotechnology PA Technical Assistance Program Pennsylvania Angel Network **R&D and KIZ Tax Credits Technology Collaborative** Series A Series B/C Pre-seed Seed Mezzanine

Montgomery County, Maryland Bioscience cluster

AMERICA

Biosciences Competitive Literature Review

MONTGOMERY COUNTY, MARYLAND BIOSCIENCES CLUSTER COMPETITIVE LITERATURE REVIEW

REPORT PUBLISHED BY: RICHARD A. BENDIS, INNOVATION AMERICA

Montgomery County Biosciences Cluster - Literature Review

Appendix 9: Montgomery County Biotechnology Potentials

Montgomery County Biotechnology Potentials

Prepared for: Montgomery County Planning Department

June 3, 2009

MILKEN INSTITUTE

THE GREATER PHILADELPHIA

LIFE SCIENCES CLUSTER 2009

An Economic and Comparative Assessment

HARPHARE S

BELECT

HD

Ross C. DeVol. Repl

with Armen Bed

BioŚNJ

CLUSTERING FOR GROWTH

How to build dynamic innovation clusters in Europe MBC:

April 2009

Strategic Outlook for 2015 and Strategic Plan

THE SOLENCE BUSINESS INNOVATION

A series of meetings agont lange involving leading description, policy makes, antenior and flaminipation has been distanting how're poch forwert high growth high such distanting how're poch forwert high growth high such distanting lange. Navi are their sugarstann.

мвс

mtechar

Biosciences Literature Review – Summary of Conclusions

- Establish a Moco Regional Innovation Intermediary
- Support Programs to Train, Mentor and Grow Bioscience Entrepreneurs
- Organize an Early-Stage Access to Capital Strategy for Bioscience Cluster
- Develop A Platform for Exchange of Knowledge Among International Clusters
- Develop a Global Marketing and Branding Strategy to Market and Commercialize the Translational Research Opportunities
- Broaden The County's Cluster Definition of the Bioscience Industry for the Bioscience Strategy and for Measuring Performance (Health IT, Cyber Security, Biomanufacturing)
- Implement and Leverage A Bioscience Talent Identification and Growth Strategy
- Exploit The Significant Presence of Federal Laboratories in Moco Region through Formal Linkages and Partnerships to Generate Greater Business Opportunities in Cluster.
- Create a more Robust Portfolio of Business and Regulatory Programs for New and Existing Companies

Benchmarking Summary of Key Cluster Attributes & Interventions

Subject Area	Maryland / Greater DC Area	Philadelphi a	Clevelan d	San Diego	San Francisc o	Greater Boston	Researc h Triangle , NC	Medico n Valley — Denmar k - Sweden	Oxfordshir e England	Switzerlan d	Victoria, Australia
1. Scientific Workforce Availability	+	+	—	+	+	+	+	+	+	+	+
2. Federal Laboratory Presence	+				_			N/A	0	N/A	N/A
3. Bioscience Seed Fund		+	0	0	0	0	0	0	+	+	
4. Direct Incentives / Business Costs	0	+	0				0	+		+	+
5. Enhanced R&D Tax Credits	0	+					+	0		+	+
6. Efficient Tech Transfer Policies			+	+	+	0	0		+	+	0
7. SBIR Support Program		+		0	0	0	+	N/A	N/A	N/A	N/A
8. Early-stage & VC capital availability			+	+	+	+		+		+	
9. Commercialization Institutes			+	0	0	+		0	0	0	
10. Established Public-Private Partnership (Innovation Intermediary)		+	+	+		+	0	+	+	+	+
Key: + : Strength - = Weakness O = Neither Strength/Weakne							eaknes	S			

AMERICA

MoCo Bioscience H-RIC

Moco and the state would lead a consortium of key industry, academic, foundation, public and NGOs to support the MoCo Bioscience H-RIC.

Montgomery County, Maryland - Innovation Intermediary

America's Bioscience Intermediary (ABI)

 $\frac{1}{2}$

Innovation America Commercialization Model

Innovation Paradigm Shift

PROOF OF RELEVANCE

(Market Pull) "It Works To Solve A Problem"

PROOF OF CONCEPT (Technological Feasibility) "It Works!"

innovation AMERICA

Private Funding: Foundation —> Angel --> Seed --> Venture Capital --> Mezzanine --> Debt --> Bank

Darwin on Collaboration

" It is the long history of humankind (and animal kind, too) those who learned to collaborate and improvise most effectively have prevailed."

-Charles Darwin

mtech

An Organization at the Center of the region's, state's or country's efforts to align local technologies, assets and resources to work together on advancing Innovation.

21st Century Innovation Intermediary

Innovation Intermediary Commercialization Structure

Investigation	Technical	Market	Business					
Proof of Concept	Technology Concept Analysis	Market Needs Assessment	Venture Assessment					
Development Phase								
Feasibility	Technology Feasibility	Market Study	Economic Feasibility					
Planning	Engineering Prototype	Strategic Marketing	Strategic Business Plan					
Introduction	Pre-Production Prototype	Market Validation	Business Start-Up					
Commercial Phase								
Full Scale Production	Production	Sales and Distribution	Business Growth					
Maturity	Production Support	Market Diversification	Business Maturity					

Intermediary Best Practices

- Longevity
- Bipartisan Support & Champions
- Independent Organizations
- Continuous Reinvention
- PRIVATE SECTOR LEADERSHIP
- Understand Return On Investment
- Sustainability In Funding
- Accountable
- Innovative
- Effective Leadership

U.S. State Innovation Programs

Technology-Development-Corporation Maryland...Technology Starts Here.

Ohio

Third Frontier

New Jersey Economic Development Authority

Successful Funding Models

Ohio Third Frontier Innovation Creating Opportunity **\$700M 5-yearBond Issue 62% Taxpayer vote approving**

\$581M 15 year Wage-tax TIF

\$160M VC Premium insurance Tax Incentives

POSITIVELY MINNESOTA Department of Employment and Economic Development

A U.S. DOE Energy Innovation HUB

AMERICA

\$60 Million Angel Tax Credits

\$129M E-RIC Grant

Utah Science Technology and Research initiative (USTAR)

•Established to generate more technology-based start-up firms, higher paying jobs, and additional business activity leading to a state-wide expansion of the Utah's tax base.

 •USTAR is comprised of three program areas:
•Research Teams, Research Building Projects, and regional Technology Outreach

mtechx

•Research Teams: World-class research teams have been recruited to Utah and developed internally within six strategic innovation focus areas:

- •Energy
- Biomedical Technology
- •Brain Medicine
- Nanotechnology
- Imaging Technology
- •Digital Media

AMERICA

Innovation 2 Enterprise - Oklahoma

•Private not-for-profit focused on wealth creation by growing OK technology-based entrepreneurial economy

•Works directly with universities, entrepreneurs, researchers and companies to help commercialize technologies, launch and grow new businesses and access capital

•Funding

innovation

- Proof of Concept Fund
- Seed Capital Fund
- Angel Network
- Entrepreneurial Development

mtech

Kansas Bioscience Authority

- \$581 million state-funded independent bioscience TBED organization
 - \$75.5 million program budget; \$3.5 million operating budget
 - 18 employees (8 "deal" people)
- Investment priorities
 - Expand the quantity and quality of bioscience research
 - Focus on the commercialization of bioscience discoveries
 - Foster formation and growth of bioscience companies
 - Position Kansas for international leadership in key clusters

mtech

Kansas Bioscience Authority – Economic Impact

Through June 2010, KBA investments have helped generate:

- 1,195 new jobs
- \$212.6 million in capital expenditures
- \$86.6 million in new research funding
- \$48.3 million in equity investments
- Including estimated wages of jobs, that represents a <u>\$9.41 return to the state</u>'s economy for each \$1 invested by the KBA

How The Fund Works

Regional IBED Intermediaries

center

Innovation Works

DESHPANDE CENTER

mtechx

Northeast Ohio IBED Intermediaries

NorTech, (the Northeast Ohio Technology Coalition) is a nonprofit Technology-Based Economic Development (TBED) organization that champions growth in Northeast Ohio's 21 county region. Foundation funded.

JumpStart is creating economic transformation in Northeast Ohio by providing resources to entrepreneurs to grow their high potential, early stage companies.

BioEnterprise is a business formation, recruitment, and acceleration initiative designed to grow health care companies and commercialize bioscience technologies

innovation

Team NEO advances Northeast Ohio's economy by attracting businesses worldwide to the 16-county Cleveland Plus region.

The New Economy Initiative for Southeast Michigan (NEI)

Founded:2008

Organizational Mission: Unique philanthropic initiative aimed at helping to restore southeast Michigan to a position of leadership in the new global economy.

Original Funding: \$100M – 8 year initiative - 10 national and local foundations

Goal: Accelerate the transition of metro Detroit to an innovation-based economy. Entrepreneurial Eco-System

- •Capitalizing on Existing Assets and Resources
- •Build and employ a more skilled and educated workforce

•Urban Entrepreneurial Partnership provides assistance to 150 minority automotive suppliers to diversify their customer bases to aerospace, alternative energy, medical devices, military and homeland security.

AMERICA

mtechx

Innovation Capital Valley of Death

"VALLEY OF DEATH"

Nebraska VC Performance 2005-2010

Total US VC and Nebraska VC Dollars Invested

							2010
Year	2005	2006	2007	2008	2009	2010	Rank
Total US VC (In Billions)	\$23.0	\$26.0	\$29.0	\$28.0	\$18.0	\$22.0	
Total NE VC	\$7.4	\$6.5	\$0.0	\$16.0	\$0.0	\$11.5	40
# of Deals	3	3	1	3	0	3	40

Source: SSTI & PWC Moneytree 2011

Funding & Resources for Innovation Capital

Key Difference Between Incubators and Accelerators

Incubators - incubators allow for slower growth, although they typically have some requirements as to how long companies can remain in the incubators before they graduate.

Accelerators - as their name implies, focus on an intense, bootcamp-like experience to get new businesses up and running in a matter of months.

mtech

2011 Accelerator Rankings

2011 Rankings USA Startup Accelerators

nk	Program	Location	Website	
	TechStars Boulder	Boulder, CO	techstars.org/boulder	
2	Y Combinator	Mountain View, CA	ycombinator.com	
	Excelerate Labs	Chicago, IL	exceleratelabs.com	WILDCATTERS
	LaunchBox Digital	Durham, NC	launchboxdigitalcom	*
;	TechStars Boston	Boston, MA	techstars.org/boston	DREAMIT
5	Kicklabs	San Francisco, CA	kicklabs.com	VENTURES
,	TechStars Seattle	Seattle, WA	techstars.org/seattle	State of the
3	Tech Wildcatter	Dallas, TX	techwildcatters.com	BRANDERY
,	DreamIt Ventures	Philadelphia, PA	dreamitventures.com	
0	The Brandery	Cincinnati, OH	brandery.org	FOUR
1	Capital Factory	Austin, TX	capitalfactory.com	PIT A
2	NYC SeedStart	New York, NY	nycseed.com	
3	Betaspring	Providence, RI	betaspring.com	TI A
4	BoomStartup	Salt Lake City, UT	boomstartup.com	
5	AlphaLab	Pittsburgh, PA	alphalab.org	.NYCSeedStart

TechCocktail.com

mtech×

a) | phalab

Betaspring

Best Practices in Innovation Entrepreneurial Support

The PIPELINE is the nation's premier statesponsored technology entrepreneur fellowship program. PIPELINE is designed to systematically identify high potential technology entrepreneurs and match them with best-in-class training, resources and mentors to facilitate their dynamic growth in

Kansas.

mtech

Ewing Marion KAUFFMAN Foundation

What Is A Road Map.....Why Is It Needed?

•A roadmap answers the *question "Where do we want to be and how to we get there?"*

•A cluster roadmap *provides strategies and action* plans to best *achieve a vision of the future shared by a critical mass* of industry-related organizations.

•The strategies and action plans are developed according to the unique strengths of the cluster and region as compared to a global market opportunity.

mtec9

Cluster Roadmap Development

Innovation America: Innovation Road Map Process

- 1. Literature Review of Comparables
- 2. Key Stakeholder Interviews/Recommendations
- 3. Asset Mapping/Cluster Analysis
- 4. GIS Innovation Mapping
- 5. Innovation Benchmarking/Index (Peer 2 Peer)
- 6. Innovation and Entrepreneurship Resource Identification (Entrepreneur Resource Guide and Database)
- 7. Innovation Economic Development Organizational Analysis and Matrix
- 8. Innovation & Commercialization Gap Analysis (programs & services)
- 9. Innovation Ecosystem Public Policy Recommendations
- 10. Develop Strategic Plan
- 11. Organizational Leadership and Staffing
- 12. Operations/Implementation Plan and Program Portfolio
- 13. Branding/Marketing Strategy and Market Research
- 14. Economic Impact Analysis
- 15. Celebrate Success

America's Innovation Road Map

- Develop an American Innovation Road Map & implementation strategy
- Create an Early-stage innovative job Fund of Funds (FOF)
- Reauthorization of the SBIR & STTR
- Increase Funding Technology Innovation Program (TIP)
- Create a Federal Angel Capital Investment Tax incentive
- Make permanent the R&D Tax Credit & add transferability provision
- Create the 1st electronic Innovation & Entrepreneurship Clearinghouse

innovation AMERICA

mtech

Bill Gates - Microsoft

"Never before in history has innovation offered promise of so much to so many in so short a time."

innovationDAILY

www.innovationamerica.us/daily

Richard A. Bendis President and CEO Innovation America 2600 Centre Square West 1500 Market Street Philadelphia, PA 19102 (215) 496-8102 rbendis@bendisig.com www.innovationamerica.us/daily

