Innovation America Innovation America Accelerating the growth of the GLOBAL entrepreneurial innovation economy
Founded by Rich Bendis

Clean crochet: A specialist weaves a blood vessel graft from human threads on a sterile tubular loom.

Thin off-white threads of human cellular material spiral around the spindle of a machine that is braiding them into a sturdy rope. It sounds macabre, but the inspiration for the material, made by San Diego–based Cytograft Tissue Engineering, is health, not horror: the biological strands could be used to weave blood vessel patches and grafts that a patient's body would readily accept for wound repair. The process is faster and could be more cost-effective than other methods of producing biological tissue replacements.

Much of today's tissue engineering depends on biodegradable but synthetic scaffolds for cells that will rebuild a piece of organ or tissue. Typically, the scaffolding is eventually destroyed by the body. Cytograft's woven tissues, however, seem to remain in the body and become populated with cells. "A long time ago we decided we were going to make strong tissues without any scaffolding," says Nicolas L'Heureux, Cytograft's cofounder and chief scientific officer. "Once you get it in the body, your body doesn't see it as foreign."

To read the full, original article click on this link: Spinning Spare Parts - Technology Review